Search results for "farnesoid X receptor"
showing 10 items of 13 documents
Nonacidic Farnesoid X Receptor Modulators.
2017
As a cellular bile acid sensor, farnesoid X receptor (FXR) participates in regulation of bile acid, lipid and glucose homeostasis, and liver protection. Clinical results have validated FXR as therapeutic target in hepatic and metabolic diseases. To date, potent FXR agonists share a negatively ionizable function that might compromise their pharmacokinetic distribution and behavior. Here we report the development and characterization of a high-affinity FXR modulator not comprising an acidic residue.
Discovery of Natural Products as Novel and Potent FXR Antagonists by Virtual Screening
2018
Farnesoid X receptor (FXR) is a member of nuclear receptor family involved in multiple physiological processes through regulating specific target genes. The critical role of FXR as a transcriptional regulator makes it a promising target for diverse diseases, especially those related to metabolic disorders such as diabetes and cholestasis. However, the underlying activation mechanism of FXR is still a blur owing to the absence of proper FXR modulators. To identify potential FXR modulators, an in-house natural product database (NPD) containing over 4,000 compounds was screened by structure-based virtual screening strategy and subsequent hit-based similarity searching method. After the yeast t…
Xanthohumol ameliorates Diet-Induced Liver Dysfunction via Farnesoid X Receptor-Dependent and Independent Signaling
2020
The farnesoid X receptor (FXR) plays a critical role in the regulation of lipid and bile acid (BA) homeostasis. Hepatic FXR loss results in lipid and BA accumulation, and progression from hepatic steatosis to nonalcoholic steatohepatitis (NASH). This study aimed to evaluate the effects of xanthohumol (XN), a hop-derived compound mitigating metabolic syndrome, on liver damage induced by diet and FXR deficiency in mice. Wild-type (WT) and liver-specific FXR-null mice (FXRLiver−/−) were fed a high-fat diet (HFD) containing XN or the vehicle formation followed by histological characterization, lipid, BA and gene profiling. HFD supplemented with XN resulted in amelioration of hepatic steatosis a…
<i>NR1H4</i> rs35724 G&gt;C Variant Modulates Liver Damage in Nonalcoholic Fatty Liver Disease
2020
Background and Aims: Farnesoid X receptor (FXR) plays a key role in bile acid and lipid homeostasis. Experimental evidence suggests that it can modulate liver damage related to nonalcoholic fatty liver disease (NAFLD). We examined the impact of the NR1H4 rs35724 variant, encoding for FXR, on liver damage in a large cohort of patients at risk of steatohepatitis. Methods: We considered 2,660 consecutive individuals at risk of steatohepatitis with liver histology. The rs35724 G>C polymorphisms was genotyped by TaqMan assays. Gene expression was evaluated by RNASeq in a subset of patients (n=124). Results: The NR1H4 rs35724 variant was protective against severity of steatosis (OR 0.89, 95% C.I.…
Pharmacological Interventions on Asymmetric Dimethylarginine, a Clinical Marker of Vascular Disease
2011
The aim of this paper is to review the latest data on the pharmacological modulation of asymmetric dimethylarginine in human disease. When the terminal nitrogens of the guanidine portion of an arginine become methylated through the action of N-methyl transferases, two chemically close, but physiologically different amino acids are synthesized: symmetric and asymmetric dimethylarginine. The vascular origin of asymmetric dimethylarginine and its inhibitory activity on endothelial nitric oxide synthase give it an important role in certain diseases in which microcirculation is compromised: hypertension, atherosclerosis, inflammatory bowel disease, and diabetes. This review discusses the role th…
NR1H4 rs35724 G>C variant modulates liver damage in nonalcoholic fatty liver disease
2021
Background and Aims: Farnesoid X receptor (FXR) plays a key role in bile acid and lipid homeostasis. Experimental evidence suggests that it can modulate liver damage related to nonalcoholic fatty liver disease (NAFLD). We examined the impact of the NR1H4 rs35724 G>C, encoding for FXR, on liver damage in a large cohort of patients at risk of steatohepatitis. Methods: We considered 2,660 consecutive individuals at risk of steatohepatitis with liver histology. The rs35724 G>C polymorphisms were genotyped by TaqMan assays. Gene expression was evaluated by RNASeq in a subset of patients (n = 124). Results: The NR1H4 rs35724 CC genotype, after adjusting for clinic-metabolic and genetic conf…
Lean NAFLD: A Distinct Entity Shaped by Differential Metabolic Adaptation
2020
Background and Aims: Nonalcoholic fatty liver disease (NAFLD) affects a quarter of the adult population. A significant subset of patients are lean, but their underlying pathophysiology is not well understood. Approach and Results: We investigated the role of bile acids (BAs) and the gut microbiome in the pathogenesis of lean NAFLD. BA and fibroblast growth factor (FGF) 19 levels (a surrogate for intestinal farnesoid X receptor [FXR] activity), patatin-like phospholipase domain containing 3 (PNPLA3), and transmembrane 6 superfamily member 2 (TM6SF2) variants, and gut microbiota profiles in lean and nonlean NAFLD were investigated in a cohort of Caucasian patients with biopsy-proven NAFLD (n …
Farnesoid X receptor activation increases cholesteryl ester transfer protein expression in humans and transgenic mice
2013
International audience; Cholesteryl ester transfer protein (CETP) activity results in a proatherogenic lipoprotein profile. In cholestatic conditions, farnesoid X receptor (FXR) signaling by bile acids (BA) is activated and plasma HDL cholesterol (HDL-C) levels are low. This study tested the hypothesis that FXR-mediated induction of CETP contributes to this phenotype. Patients with cholestasis and high plasma BA had lower HDL-C levels and higher plasma CETP activity and mass compared with matched controls with low plasma BA (each P < 0.01). BA feeding in APOE3*Leiden transgenic mice expressing the human CETP transgene controlled by its endogenous promoter increased cholesterol within apoB-c…
Molecular mechanisms of hepatotoxic cholestasis by clavulanic acid: Role of NRF2 and FXR pathways.
2021
Treatment of β-lactamase positive bacterial infections with a combination of amoxicillin (AMOX) and clavulanic acid (CLAV) causes idiosyncratic drug-induced liver injury (iDILI) in a relevant number of patients, often with features of intrahepatic cholestasis. This study aims to determine serum bile acid (BA) levels in amoxicillin/clavulanate (A + C)-iDILI patients and to investigate the mechanism of cholestasis by A + C in human in vitro hepatic models. In six A + C-iDILI patients, significant elevations of serum primary conjugated BA definitely demonstrated A + C-induced cholestasis. In cultured human Upcyte hepatocytes and HepG2 cells, CLAV was more cytotoxic than AMOX, and, at subcytoto…
Species-specific mechanisms for cholesterol 7alpha-hydroxylase (CYP7A1) regulation by drugs and bile acids.
2005
The gene encoding cholesterol 7alpha-hydroxylase (CYP7A1) is tightly regulated in order to control intrahepatic cholesterol and bile acid levels. Ligands of the xenobiotic-sensing pregnane X receptor inhibit CYP7A1 expression. To retrace the evolution of the molecular mechanisms underlying CYP7A1 inhibition, we used a chicken hepatoma cell system that retains the ability to be induced by phenobarbital and other drugs. Whereas bile acids regulate CYP7A1 via small heterodimer partner and liver receptor homolog-1, mRNA expression of these nuclear receptors is unchanged by xenobiotics. Instead, drugs repress chicken hepatic nuclear factor 4alpha (HNF4alpha) transcript levels concomitant with a …